
An Associative Memory System for Incremental Learning and
Temporal Sequence

Furao Shen, Member, IEEE, Hui Yu, Wataru Kasai and Osamu Hasegawa, Member, IEEE

Abstract— An associative memory (AM) system is proposed
to realize incremental learning and temporal sequence learning.
The proposed system is constructed with three layer networks:
The input layer inputs key vectors, response vectors, and
the associative relation between vectors. The memory layer
stores input vectors incrementally to corresponding classes. The
associative layer builds associative relations between classes.
The proposed method can incrementally learn key vectors and
response vectors; store and recall both static information and
temporal sequence information; and recall information from
incomplete or noise-polluted inputs. Experiments using binary
data, real-value data, and temporal sequences show that the
proposed method works well.

I. INTRODUCTION

An associative memory (AM) is a memory that stores data
in a distributed fashion and which is addressed through its
contents. They can recall information from incomplete or
garbled inputs. Traditionally, when an input pattern, called a
key vector, is presented, the associative memory is expected
to return a stored memory pattern (called a response vector)
associated with a key. However, Human memory can learn
new knowledge incrementally and not destroy old learned
knowledge. Also, for human beings, temporal sequences are
not memorized as a static pattern, but memorized as patterns
with a consecutive relation. It means that AM systems
must incrementally memorize and associate new information
without destroying stored knowledge. Also, systems must not
only memorize static information, but also store temporal
sequence information.

For incremental learning, Sudo et al. proposed a self-
organizing incremental associative memory (SOIAM) [1]
specifically to examine incrementally stored new patterns
without destruction of memorized information, but that mem-
ory system is unable to address temporal sequences. Kosko
[2] and Hattori and Hagiwara [3] processed temporal se-
quences, but their method can deal only with simple temporal
sequences. Presented with some repeated or shared items
existing in the temporal sequences, they cannot work well.
Barreto and Araujo [4] learned the temporal order through
a time-delayed Hebbian learning rule, but the complexity of
the model depends highly on the number of context units.

F. Shen (frshen@nju.edu.cn) and H. Yu (ukei.yu@gmail.com) are with
the State Key Laboratory for Novel Software Technology, and Jiangyin
Information Technology Research Institute, Nanjing University, Nanjing,
210093, P.R. China.

W. Kasai is with the Department of Computer Intelligence and Systems
Science, Tokyo Institute of Technology, Yokohama, 226-8503, Japan. E-
mail: kasai.w.aa@m.titech.ac.jp

O. Hasegawa is with the Imaging Science and Engineering Lab., Tokyo
Institute of Technology, R2-52, 4259 Nagatsuda, Midori-ku, Yokohama,
226-8503, Japan. E-mail: hasegawa@isl.titech.ac.jp

Fig. 1. Network structure of proposed Associative Memory.

Sakurai et al. [5] proposed a self-organizing map based asso-
ciative memory (SOM-AM) for temporal sequences, but its
recall performance is affected by the initial values of weights.
Such methods only considered the binary temporal sequence
without touching on the real-valued sequence. Furthermore,
it is difficult for such methods to realize incremental learning
for temporal sequences.

In this paper, we propose an associative memory system to
realizing incremental learning and temporal sequence learn-
ing. We construct a three-layer network to realize our targets,
with an input layer, a memory layer, and an associative layer.
The input layer is used to input key vector and response
vector to memory layer. The memory layer is used to store
information from the input layer. Both key vector information
and response vector information can be stored in the memory
layer. For learning of the memory layer, incremental learning
is available: new key vectors and response vectors can be
memorized incrementally. The associative layer will be used
to build the association relation between the key vector and
the response vector. In this layer, we will construct temporal
sequence associations.

II. STRUCTURE OF PROPOSED ASSOCIATIVE MEMORY

We designed a three-layer network to realize our design
targets discussed in section I. Figure 1 presents the three-
layer network structure.

The input layer is used to input patterns. The input feature
vector (key vector or response vector) is input into the system

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

with a class label. According to the class label, the proposed
method finds the corresponding sub-network in the memory
layer, and incrementally learns the new input information. If
the input key vector or response vector does not belong to any
class existing in the memory layer, then the new input vector
will become the first node of a new class (new sub-network)
and the new class will be added to the memory layer. The
class label of memory layer will be sent to the associative
layer; the associative layer will build a relation between
the key vector’s class (called key class) with the response
vector’s class (called response class) with arrow edges. One
node exists in the associative layer corresponding to one sub-
network in the memory layer. Arrow edges connect such
nodes to build an association relation. The beginning of a
connection is the key class. The end of the connection is the
corresponding response class.

The input layer will input both binary patterns and non-
binary patterns. In the memory layer, the proposed method
uses different sub-networks to memorize different classes.
Context patterns of temporal sequence can be memorized
in the memory layer, and the association time order can
be memorized in the associative layer. Incremental learning
can be realized during the training of the memory layer and
associative layer.

III. LEARNING ALGORITHMS

During memory layer training, how to realize incremental
learning is important. When new patterns are input, we must
memorize such new patterns without destroying the stored
patterns.

During training of the associative layer, we input the key-
response pair to the system. The association relation between
the key vector and response vector will be memorized in the
associative layer. In addition, the context relation between
temporal sequences can be input to the associative layer as
input data; the associative layer must be able to memorize
the associative relation and the time order between context
patterns. The associative layer must be able to learn the
new association incrementally if a new association between
memorized classes occurs.

A. Memory layer

The memory layer (see Fig. 1) comprises some sub-
networks; each sub-network is used to represent one class.
All patterns belonging to one class will be memorized in the
corresponding sub-network.

Herein, we adopt a self-organizing incremental neural
network (SOINN) [6] to build the memory layer. It is based
on competitive learning. Neural nodes are used to represent
the data distribution of input data. The weights of such nodes
are used to store the input patterns.

Self-organizing incremental neural network (SOINN) [6]
and its enhanced version [7] execute topology representation
and incremental learning without predetermination of net-
work structure and size; SOINN is able to realize both real-
valued pattern memorization and incremental learning. Self-
organizing incremental associative memory (SOIAM) [1] is

based on SOINN. Here, the basic idea of training memory
layer for the proposed method is also enlightened by SOINN.
We adjust the unsupervised SOINN for supervised mode: for
each class we adopt one SOINN to represent the distribution
of that class. The input patterns (key vectors and response
vectors) are separated to different classes. For each class, we
use one sub-network to represent the data distribution of the
class.

Algorithm 3.1 shows the proposed algorithm for training
of the memory layer. When a vector is input to the memory
layer, if there is no sub-network named with the class name
of this input vector, then set up a new sub-network with the
input vector as the first node of the new sub-network. Name
this sub-network with the class name of the input vector.
If there is already a sub-network with the same class name
as the input vector, we use training algorithm of SOINN to
update the sub-network with the input vector.
Algorithm 3.1: Learning of the memory layer

1. Initialize the memory layer network: node set A, sub-
network set S, and connection set C, C ⊂ A×A to the
empty set.

A = ∅, S = ∅, C = ∅ (1)

2. Input a pattern x ∈ Rn to the memory layer, the class
name of x is cx.

3. If there is no sub-network with name cx, then add a
sub-network cx to the memory layer. This sub-network
has a node c1x, and the node c1x is added to the node set
A, i.e., S = S ∪ {cx}, A = A ∪ {c1x}.

4. If there already exists a sub-network cx in memory
layer, then update the sub-network with SOINN.

According to [7], SOINN is able to represent the topology
structure of input data. For that reason, Algorithm 3.1 can
represent the topology structure of input patterns. It uses
weights of nodes in the memory layer to represent the input
pattern. It can also realize incremental learning. New classes
are learned incrementally by adding new sub-networks. New
patterns inside one class are learned incrementally by adding
new nodes to the sub-network. The number of sub-networks
is determined by the number of classes in the input patterns.
When a new class arises, the memory layer can react for the
new class without destroying other old classes. Inside one
class, SOINN controls the increment of nodes to learn new
knowledge without unlimited increase of number of nodes.

B. associative layer
Associative layer will be used to build association between

key vectors and response vectors. We designate the class
a “key class”, to which the key vector belongs, and call
the class the “response class”, to which the response vector
belongs. In the associative layer (see Fig. 1), nodes are
connected with arrow edges. Each node represents one class:
the beginning of the arrow means the key class; the end of
the arrow means the response class.

During training of the associative layer, we use associa-
tion pair data—the key vector and response vector—as the

kamela
Highlight

kamela
Highlight

training data. Such data can be input incrementally into
the system. First, Algorithm 3.1 is used to memorize the
information of both the key vector and the response vector.
Then, the class name of the key class and associative class
will be sent to the associative layer. In the associative layer,
if there already exist nodes representing the key class and
response class, then we connect the nodes of the key class
and response class with an arrow edge. If no node represents
the key class (or response class) within the associative layer,
then add a node to the associative layer and use that node
to express the new class. Then build an arrow edge between
the key class and response class. Algorithm 3.2 gives details
of how to build an association between the key vector and
response vector.
Algorithm 3.2: Learning of the associative layer

1. Initialize the associative layer network: node set B,
arrow edge set D, and D ⊂ B ×B to the empty set.

B = ∅, D = ∅ (2)

2. Input a key vector x ∈ Rn; the class name of x is cx.
The typical prototype of class cx is pcx .

3. Use Algorithm 3.1 to memorize key vector x in the
memory layer.

4. If no node exists in the associative layer representing
class cx, then insert a new node b, representing class
cx, into the associative layer (B = B ∪ {b}) with

cb = cx (3)
Wb = Wpcx

(4)
mb = 0 (5)

If there already exists a node b representing class cx,
then

mb ← mb + 1 (6)

5. Input the response vector y ∈ Rm, the class name of y
is cy . The typical prototype of class cy is pcy .

6. Use Algorithm 3.1 to memorize the response vector y
in the memory layer.

7. Find node d in the associative layer representing class
cy . If there is no node representing class cy , then insert
a new node d, representing class cy , into the associative
layer with

cd = cy (7)
md = 0 (8)

Wd = Wpcy
(9)

If there already exists a node d representing class cy,
then do

md ← md + 1 (10)

8. If there is no arrow between node b and d, connect node
b and d with an arrow edge. The beginning of the arrow
is node b. The end of the arrow is node d.

D = D ∪ {(b, d)} (11)

Set the mbth response class of b as cd,

ACb[mb] = cd (12)

Set the weight of arrow (b, d) as 1,

W(b,d) = 1 (13)

In Step2 and Step4 of Algorithm 3.2, a typical prototype
of class cx or cy is mentioned. This typical prototype is
predefined for the corresponding class. It is user defined
pattern and it represents the class.

Algorithm 3.2 can realize incremental learning. For exam-
ple, we presume that Algorithm 3.2 has built the association
of x1 → y1. We want to build x2 → y2 association
incrementally. If cx2 and cy2 differ from class cx1 and cy1 ,
we need only build a new arrow edge from class cx2 to class
cy2 with Algorithm 3.2. This new edge has no influence to
the edge (cx1 , cy1). If one of cx2 and cy2 is the same as
cx1 or cy1 , for example, cx2 = cx1 , and cy2 ̸= cy1 , then
Algorithm 3.1 will memorize the pattern x2 in sub-network
cx1

incrementally, and Step 4 of Algorithm 3.2 will be used
to update the account index of node cx1 in the associative
layer. Then Step 6, Step 7 and Step 8 of Algorithm 3.2 are
used to generate a node cy2 in the associative layer and
build an arrow edge from cx1 to cy2 , which differs from
edge (cx1 , cy1). In this situation, the pair x2 → y2 is learned
incrementally. For the situation cx2 ̸= cx1 , cy2 = cy1 , we can
give a similar analysis.

C. Temporal Sequence

For the temporal sequence association, the question is,
given a key vector, how to associate the full temporal
sequence. This key vector might be one pattern chosen
randomly from the whole temporal sequence. The chosen
pattern might be polluted by noise.

To build associations between context patterns with time
order, we will take all patterns in the temporal sequence
as both key vectors and response vectors, i.e., the former
pattern is a key vector and the following pattern is the
corresponding response vector, and on the contrary, the latter
pattern is also set as a key vector and the former one is set
as the corresponding response vector. We do this because we
want to realize this goal: randomly choosing one part from
the temporal sequence as the key vector, we can associate
the full temporal sequence. The key vector and its context
vectors build the training pairs. We use Algorithm 3.2 to
build an association relation between key vectors and their
context vectors. At the same time, we save the time order
information in the contents of nodes in the associative layer.
Algorithm 3.3 includes details of the temporal sequence
training process.
Algorithm 3.3: Learning of the temporal sequence

1. Input a temporal sequence X = x1, x2, ..., xn with time
order t1, t2, ..., tn. The class names of the sequence
items are cx1 , cx2 , ..., cxn .

2. For k = 1, 2, ..., n, do the following Step 3 – Step 4.

kamela
Highlight

kamela
Highlight

kamela
Highlight

kamela
Highlight

kamela
Highlight

kamela
Highlight

kamela
Highlight

kamela
Highlight

3. If k < n, then set xk as the key vector, xk+1 as the
response vector, then use Algorithm 3.2 to build an
association connection between xk and xk+1. The
corresponding nodes in the associative layer are bxk

and bxk+1
.

4. If k > 1, set xk as the key vector, xk−1 as the
response vector, then use Algorithm 3.2 to build an
association connection between xk and xk−1. The
corresponding nodes in the associative layer are bxk

and bxk−1
.

5. Update the time order of bxk
with the following.

TFbxk
[mbxk

] = tk−1 (14)
Tbxk

[mbxk
] = tk (15)

TLbxk
[mbxk

] = tk+1 (16)

Algorithm 3.3 can build an association relation between
context patterns in the temporal sequence. With the associ-
ation relation described here, randomly given one pattern in
any position of the temporal sequence as a key vector, it is
possible for the proposed method to recall the full temporal
sequence. In addition, Algorithm 3.3 is suitable for incremen-
tal learning. For example, if we want to add some new items
xn+1, xn+2, ..., xn+m to the temporal sequence X with time
order tn+1, tn+2, ..., tn+m, then we need only repeat Step 3
– Step 5 of Algorithm 3.3 for k = n, n + 1, ..n + m, we
can incrementally learn the new items without destroying
the learned association relation. If the new item is not added
behind the temporal sequence but inserted into the sequence
in any position, that is, if xnew between xk and xk+1 with
time order tnew is inserted into the temporal sequence X ,
then we need only remove the association between xk and
xk+1, then repeat Step 3 – Step 5 of Algorithm 3.3 for
xk, xnew, and xk+1. Here, tnew is a different value from
t1, t2, ..., tn with any value.

We use Algorithm 3.3 to train Y and build an association
relation between items of Y in the associative layer if we
want to learn a new temporal sequence Y that is different
from X . We increment the account index mi of those
repeated class i to store the corresponding response class and
time order if some items of the Y sequence are repeated with
some items of the X sequence. Consequently, the learning
results of sequence Y do not influence the learned results of
sequence X .

The use of account index mi for response class ACi, time
order Ti, time order of the latter pattern TLi, and time order
of the former pattern TFi ensures that even if plenty of
repeated or shared items exist in a temporal sequence, then
the proposed method is able to recall the whole temporal
sequence correctly. Such temporal sequences with repeated
or shared items are difficult for some traditional associative
memory systems, as we described in section I.

IV. RECALL AND ASSOCIATE

When a key vector is presented, the associative memory
is expected to return a stored memory pattern that is co-
incident with the key. Typical associative memory models

use both auto-associative and hetero-associative mechanisms
[8]. Auto-associative information supports the processes of
recognition and pattern completion. Hetero-associative infor-
mation supports the processes of paired-associate learning.
In this section, we explain the recalling algorithm for auto-
associative tasks, and subsequently discuss the associating
algorithm of hetero-associative tasks; We also describe the
recalling algorithm of the temporal sequence in this section.

A. Recall in auto-associative mode

For auto-associative tasks, the associative memory is ex-
pected to be able to recall a stored pattern resembling the
key vector such that noise-polluted or incomplete inputs can
also be recognized.

When a key vector is presented, if the class name of the
key vector is available, then we will find the corresponding
node in the associative layer. The weight of the node will be
the recall result. We will use the k-nearest neighbor rule to
determine which class the key vector belongs to if the key
class is unavailable. Assuming that the determined class is
c, we output the weight of the corresponding node of class
c in the associative layer as the recalling result. Algorithm
4.1 gives details related to the recall process.
Algorithm 4.1: Recall the stored pattern with a key vector

1. Input a key vector x.
2. Find the corresponding node b with class name cx in the

associative layer if the class name cx of x is available.
3. If the class name cx of x is unavailable, then do the

following Step 4 – Step 6.
4. Find the first k-nearest nodes to key vector x in the

whole network of memory layer as

s1 = argmin
i∈A

||x−Wi||d (17)

s2 = argmin
i∈A\s1

||x−Wi||d (18)

...
sk = argmin

i∈A\s1,s2,...,sk−1

||x−Wi||d (19)

the class names of found nodes s1, s2, ..., sk are
c1, c2, ..., ck.

5. Do major voting for classes c1, c2, ..., ck; obtain the
major repeated class c.

6. Find the corresponding node b with class name c

7. Output Wb as the recall result for key vector x.

In Algorithm 4.1, one parameter k is needed. We can tune
this parameter using some methods such as cross-validation.

B. Associate in hetero-associative mode

The paired-associate learning task is a standard assay of
human episodic memory. Typically, subjects are presented
with randomly paired items (e.g., words, letter strings, pic-
tures) and are asked to remember each x → y pair for a
subsequent memory test. At testing, the x items are presented
as cues; subjects attempt to recall the appropriate y items.

With Algorithm 3.2, the proposed method can memorize
the x → y pair. To associate y from x. First, we use
Algorithm 4.1 to recall the stored key class cx of key vector
x, the corresponding node for class cx in the associative
layer is bx; then, we use ACbx [k], k = 1, ...,mbx to obtain
the response class cy and corresponding node by . Finally,
we output Wby as the associating results for key vector x.
Algorithm 4.2 shows details of associating y from key vector
x.
Algorithm 4.2: Associate the stored y pattern from key vector
x

1. Input a key vector x.
2. Using Algorithm 4.1, find the class name cx of x and

the corresponding node bx in the associative layer.
3. For k = 1, 2, ...,mbx , do the following Step 4 – Step 5.

4. Find the response class cy:

cy = ACbx [k]. (20)

5. Find node by in the associative layer corresponding
to class cy . Then output weight Wby as the associ-
ated result of key vector x

Using Algorithm 4.2, we can associate a pattern y from
key vector x. If more than one class associated from a key
class exists, then we output all associated patterns, which are
typical prototypes of response classes.

C. Recall temporal sequence

Section III-C explains the learning algorithm for temporal
sequences. All elements of temporal sequences are trained
as key vectors and response vectors. The time order of every
item is memorized in the node of the associative layer. To
recall the temporal sequence when a key vector is presented,
we first do auto-association for the key vector with Algorithm
4.1 and recall the key class. Then, with the recalled time
order of the current item, former item, and latter item to
associate the former and next items, we set the associated
items as the key vector and repeat the steps listed above to
recall the full temporal sequence. Algorithm 4.3 gives details
of recalling a temporal sequence from a key vector.
Algorithm 4.3: Recall temporal sequence from a key vector

1. Input a key vector x.
2. Using Algorithm 4.1 to find the class name cx of x,

and find the corresponding node bx for class cx in the
associative layer.

3. For k = 1, 2, ...,mbx , find the corresponding time order
tks by

tks = Tbx [k], k = 1, 2, ...,mbx . (21)

Find the minimal time order t∗s from tks , k =
1, 2, ...,mbx . The corresponding index is k∗s .

4. Output the weight of node bx as the recall item for key
vector x, the corresponding time order of x is t∗s .

5. To recall the latter items of the current recalled item,
set kL = k∗s , node b = bx, and do Step 6 – Step 8.

Fig. 2. Binary text character dataset

Fig. 3. Generate noise patterns from the original pattern

6. Find the time order of the latter pattern by

tlatter = TLb[kL]. (22)

Find the response class cy using

cy = ACb[kL]. (23)

The corresponding node to cy in the associative
layer is by .

7. Output the weight Wby of by as the recalled next
item. Output tlatter as the time order of the next
item.

8. Find index k in node by with Tby [k] = tlatter,
update parameters using kL = k, b = by, go to
Step 6 to recall the next item until all latter items
of the key vector are recalled.

9. To recall the former items of the current item, set kF =
k∗s , b = bx, and do Step 10 – Step 12.
10. Find the time order of former item by tformer =

TFb[kF]. Find the response class cy by cy =
ACb[kF]. The corresponding node to cy in the
associative layer is by .

11. Output the weight Wby of by as the former item,
and output tformer as the time order of the former
item.

12. Find the index k in node by with Tby [k] = tformer,
update parameters by kF = k, b = by , go to Step
10 to recall the former items until all former items
of the key vector are recalled.

In Algorithm 4.3, we first recall the item corresponding
to the key vector; then we recall the latter items and former
items with the help of the time order stored in the associative
layer. Because only one time order corresponds to one item
of the temporal sequence, even if plenty of repeated or shared
items exist in the temporal sequence, then Algorithm 4.3 can
recall the full temporal sequence correctly. With the learning
process in Algorithm 3.3 and recalling process in Algorithm
4.3, we can realize association of the temporal sequence well.

V. EXPERIMENT

In this section, we describe some experiments to test the
proposed method. First, we adopt real-world data to test

TABLE I
COMPARISON: RECALLING RESULTS OF THE PROPOSED METHOD AND

OTHER METHODS UNDER AN INCREMENTAL ENVIRONMENT

Method Number of nodes Recall rate
Proposed 94 100%
SOIAM 99 100%
BAM with PRLAB - 3.8%
KFMAM 64 31%

81 38%
100 42%

KFMAM-FW 16 infinite loop
25 infinite loop
36 100%
64 100%

Fig. 4. Facial image (a) 10 images of one person, (b) 10 different person

the incremental learning efficiency of the proposed method.
Then, we use some temporal sequential data to test the
proposed method and compare it with some other methods.

A. Binary (bipolar) data

Many traditional associative memory systems can only
process binary data. In this experiment, we use a binary text
character dataset taken from the IBM PC CGA character
font to test the proposed method. This dataset is adopted by
some methods such as SOIAM [1] and the Kohonen Feature
Map associative memory (KFMAM) dataset [9] to test their
performance. Figure 2 portrays the training data, comprising
26 capital letters and 26 small letters; each letter is a 7× 7
pixel image, and every pixel has only -1 (black) or 1 (white)
value. During memorization, capital letters are used as the
key vectors; small letters are used as the response vectors,
i.e., A→ a, B → b, ..., Z → z.

In [1], with the dataset presented in Fig.2, A. Sudo et al.
compare results of their proposed SOIAM with bidirectional
associative memory with the Pseudo-Relaxation Learning
Algorithm for BAM (PRLAB) [10], KFMAM [9], and KF-
MAM with weights fixed and semi-fixed neurons (KFMAM-
FW) [11]. Here, using the same dataset, we compare the
proposed method with other methods. For SOINN used in

the proposed method, agemax = 50, λ = 50. For other
methods, we adopt the same parameters as those reported
in Table I of [1].

For the proposed method, every letter is thought of as
one class; there are 52 classes for this task. For every class,
the original training set comprises one pattern (7× 7 binary
image). To expand the training set, we randomly add 5–20%
noise to the original pattern and repeat this process 100 times
to obtain 100 training patterns for each class. Such original
patterns are set as the typical prototype of the classes. The
noise is generated using the following method: randomly
choose some pixels (e.g., 10% of total pixels) and transform
the value of such pixels from 1 to -1 or from -1 to 1. Figure
3 portrays one example. Only the proposed method is able to
memorize patterns with class, thus newly generated patterns
are used only for training of the proposed method. For other
methods, original patterns are used as training set.

We first test the proposed method, SOIAM, BAM with
PRLAB, KFMAM, and KFMAM-FW under a stationary
environment. All pairs A → a, B → b, ..., Z → z are
therefore used to train the systems without changing the
data distribution. For the proposed method, 90 nodes are
generated automatically to memorize the input patterns in
the memory layer; 52 nodes exist in the associative layer to
represent the 52 classes. An association relation is also built
between capital letters and small letters. During the recall
process, capital letters (without noise) serve as key vectors.
With Algorithm 4.2, all associated letters are recalled, the
correct recall rate is 100%. For SOIAM, it clustered the
combine vector A + a, B + b, ..., Z + z, and generated 93
nodes to represent the 26 clusters. When a capital letter is
served as a key, the letter is compared with the former part of
every node and finds the nearest one; then the backward part
is reported as the associated results. Actually, SOIAM also
got a 100% recall ratio. For BAM with PRLAB, KFMAM,
and KFMAM-FW, the training data are 26 pairs, A → a,
B → b, ..., Z → z. Under this stationary environment, BAM
with PRLAB and KFMAM-FW can get perfect recall results
(100%), but KFMAM worked poorly, with only a 63% recall
ratio.

Secondly, we consider incremental learning. The patterns
of A → a, B → b, ..., Z → z are input into the system
sequentially. At the first stage, only A→ a are memorized,
then B → b are input into the system and memorized, and so
on. This environment is non-stationary, new patterns and new
classes will be input incrementally into the system. Table I
shows comparison results between the proposed method and
other methods. For the proposed method, 94 nodes in all are
needed for memorization of all 52 classes in the memory
layer. One node represents one class in the associative layer.
Therefore, 52 nodes exist in the associative layer. The correct
recall rate is 100% for the proposed method. It is difficult
for BAM and KFMAM to realize incremental learning.
Later input patterns will destroy the memorized patterns. For
SOIAM, it needs 99 nodes to represent the association pairs;
it recalls the associated patterns with a 100% correct recall

Fig. 5. Two open temporal sequences: C is shared by both sequences

Fig. 6. Recall results of Temporal Associative Memory (TAM)

rate. For KFMAM-FW, if we adopt sufficient nodes (more
than 36), then it can achieve perfect recalling results. We
must mention that if the maximum number of patterns to be
learned is not revealed in advance, then we do not know how
to give the total number of nodes for KFMAM-FW [1].

B. Real-value data

For this experiment, we adopt AT&T face database, which
includes 40 distinct subjects and 10 different images per sub-
ject. These subjects are of different genders, ages, and races.
For some subjects, the images were taken at different times.
There are variations in facial expression (open/closed eyes,
smiling/nonsmiling) and facial details (glasses/no glasses).
All images were taken against a dark homogeneous back-
ground with subjects in an upright frontal position, with
tolerance for some tilting and rotation of up to about 20
deg. There is some variation in scale of up to about 10%.

The original images are grayscale, with a resolution of
112 × 92. Before presenting them to the proposed system,
we normalize the value of each pixel to the range [-1, 1].
Figure 4(a) presents 10 images of the same person; Fig. 4(b)
portrays the 10 different people to be memorized. For every
person, five images are used to memorize the person, and the
remaining five images of such person will be used to test the
memorized efficiency. No overlap exists between the training
and test sets.

Under a non-stationary incremental environment, 50 pat-
terns belonging to 10 classes are input sequentially into
the system. During training, SOIAM puts together a key
vector and the response vector (here is the typical prototype)
and sends it to SOIAM for memorization. There are 50
combination vectors, for which SOIAM generated 101 nodes
to store those associative pairs. For the proposed method, the
key vectors are memorized under auto-associative mode. The
memory layer of the proposed method will memorize such
patterns incrementally; the number of nodes of every class is
learned automatically. With agemax = 50, λ = 50, 22 nodes
in all are generated to store the input patterns. The associative
layer has 10 nodes representing 10 classes. No association
between classes is produced (auto-associative mode). During
the recall process, the remaining test data of the same
person are served as key vectors. The recall performance will
be affected by the selection of training images. Therefore,
the reported results are obtained by training 20 times and

Fig. 7. Self-organizing Map (SOM) recall results

Fig. 8. SOM Associative Memory (SOM-AM) recall results

selecting the average recall rate overall results. For each
training time, we adopt different training examples (random
selection of five images from 10 per each subject). With
different parameters, SOIAM yields different results. Its best
recall rate is 95.3%. With Algorithm 4.1, we recall the
memorized pattern according to the key vectors, and with
k = 1, the recalling rate is 96.1%, which is slightly better
than SOIAM.

For a stationary environment, nearly the same results as
those for an incremental environment were obtained for the
proposed method and SOIAM.

In this experiment, we only compared the proposed
method with SOIAM under a non-stationary incremental
environment, with no comparison to other methods. It is for
the reason that there are no other methods suit non-stationary
incremental learning with real-value data.

C. Temporal sequence

In this section, we describe some experiments that were
undertaken to test the ability of the proposed method for
storing and recalling temporal sequences. In [5], N. Sakurai
et al. compared their proposed SOM-AM with Temporal
Associative Memory (TAM) [2], and conventional SOM [11].
According to [5], two open temporal sequences (Fig. 5) are
used. At first, sequence A→B→C→D→E was learned using
each method; then F→G→C→H→I was learned incremen-
tally as new information. The two temporal sequences have
a shared item C. After training, pattern A and F are used as
the key vectors to recall temporal sequences. In fact, TAM
can not store one-to-many associations, the learning of TAM
did not converge; it failed to recall the sequences (Fig. 6).
For conventional SOM, because the contextual information
of temporal sequences is not considered both in the learning
and in the recall process, the correct sequence was not
recalled (Fig. 7). Actually, SOM-AM resolved the ambiguity
using recurrent difference vectors and recalled both temporal
sequences correctly (Fig. 8).

For the proposed AM system, the sequence items are first
memorized in the memory layer as different classes; then the
association relation are built in the associative layer. With
Algorithm 4.3, we can recall all sequences with any input
key vector. For SOM-AM, only pattern A served as a key
vector can recall the first sequence; only pattern F served as a
key vector can recall the second sequence. For the proposed

Fig. 9. Proposed associative memory recall results

Fig. 10. Closed temporal sequence

method, if A, B, D, or E is served as a key vector, then the
first sequence is recalled. If F, G, H, or I is served as a key
vector, then the second sequence is recalled. If C is served
as a key vector, then both the first sequence and the second
sequence are recalled. Figure 9 portrays the recall results.

Figure 10 portrays a closed temporal sequence; the items
K, B, and G are consecutive and occur twice. Such a situation
is difficult for some methods such as TAM, SOM, and
Contextually guided AM system [4]. Actually, SOM-AM can
store and recall this sequence with the first item A served as
key vector, but if we adopt a key vector other than A, then
SOM-AM is unable to recall the sequence. For the proposed
method, we can recall the sequence with any input key vector.
Figure 11 portrays the recall results.

Finally, we compare the proposed method with SOM-AM
using a complicated sequence: half of a famous Japanese
children’s song, chou chou. The song has 32 notes including
four-quarter rests. According to [5], to store the song, we
can respectively encode do, re, mi, fa, sol, and a quarter
rest with alphabetical patterns, C, D, E, F, G, and R. Figure
12 portrays the song sequence. This temporal sequence is
complex because each item appears several times: C, D, E,
F, G, and R repeat respectively 2, 7, 9, 3, 7, and 4 times. Then
SOM-AM is examined for 50 trials: the first note G served
as key vector for recalling. In some trials, SOM-AM failed
to recall the song, the perfect recall rate was 86%. Using the
proposed method, any note can be used as a key vector; the
song can be recalled perfectly. We also do 50 trials for the
proposed method; the perfect recall rate is 100%.

VI. CONCLUSION

As described in this paper, an associative memory is pro-
posed to realize incremental learning and temporal sequence
learning, based on three-layer network. Input vectors are
memorized in memory layer. Association relations are built
in associative layer. Patterns are memorized with classes.
New information (new patterns or new classes) can be stored
incrementally. Patterns with binary or non-binary data can
be stored in the memory layer. With the associative layer,

Fig. 11. Proposed associative memory for closed temporal sequence recall
results

Fig. 12. Complicated temporal sequence: chou chou song

new associations can be added incrementally between stored
items. The storage and recall of temporal sequences is
also available. Experiments for binary data, real-value data,
and temporal sequence show the efficiency of the proposed
method.

ACKNOWLEDGMENTS

This work was supported in part by China NSF grant
(#60975047, #60723003, #60721002), Jiangsu NSF grant
(#BK2009080), and 973 Program (2010CB327903). This
work is also supported in part by NEDO of Japan.

REFERENCES

[1] Akihito Sudo, Akihiro Sato, and Osamu Hasegawa. Associative mem-
ory for online learning in noisy environments using self-organizing
incremental neural network. IEEE Trans. on Neural Networks,
20(6):964–972, 2009.

[2] B. Kosko. Bidirectional associative memories. IEEE Trans. Systems,
Man and Cybernetics, 18(1):49–60, 1988.

[3] M. Hattori and M. Hagiwara. Episodic associative memory. Neuro-
computing, 12:1–18, 1996.

[4] G. de A. Barreto and A. F. R. Ara ujo. Storage and recall of complex
temporal sequences through a contextually guided self-organizing
neural network. Proc. of the IEEE-INNS-ENNS Int. Joint Conf. on
Neural Networks, 2000.

[5] Naoaki Sakurai, Motonobu Hattori, and Hiroshi Ito. Som associative
memory for temporal sequences. Proceedings of the 2002 International
Joint Conference on Neural Networks, pages 950–955, 2002.

[6] F. Shen and O. Hasegawa. An incremental network for on-line
unsupervised classification and topology learning. Neural Networks,
19:90–106, 2006.

[7] F. Shen and O. Hasegawa. An enhanced self-organizing incremental
neural network for online unsupervised learning. Neural Networks,
20:893–903, 2007.

[8] Daniel S. Rizzuto and Michael J. Kahana. An autoassociative neural
networkmodel of paired-associate learning. Neural Computation,
13:2075–2092, 2001.

[9] T. Kohonen. Self-organization and associative memory. Berlin:
Springer-Verlag, 1984.

[10] H. Oh and S.C. Kothari. Adaptation of the relaxation method for
learning in bidirectional associative memory. IEEE Trans. On Neural
Networks, 5(4):576–583, 1994.

[11] T. Yamada, M. Hattori, M. Morisawa, and H. Ito. Sequential learning
for associative memory using kohonen feature map. Proc. of the 1999
International Joint Conference on Neural Networks, pages 1920–1923,
1999.

